Predicting possible leakage due to dynamics strain localization in granular materials with a coupled continuum-discrete coupling model
ثبت نشده
چکیده
A three-dimensional multiscale model has been developed and used to analyze the evolutions of microstructural attributes and hydraulic properties inside dilatant shear bands. In the proposed multiscale coupled scheme, we establish links between the discrete element method, which explicitly replicates granular motion of individual particles, and a fi nite element continuum model, which captures the homogenized responses of the granular assemblies. A spatial homogenization is performed to obtain the stress measure from representative elementary volume of discrete element simulations for macroscopic explicit dynamics fi nite element simulations. We demonstrate that the multiscale coupling scheme is able to capture the plastic dilatancy and pressure-sensitive frictional responses commonly observed inside dilatant shear bands and replicate the induced anisotropy of the elasto-plastic responses, without employing any phenomenological plasticity model at macroscopic level. To improve cost-effi ciency and prevent shear locking, a one-point quadrature rule is used along with an hour-glass control algorithm. Because discrete element simulations in each representatively elementary volume (Gauss point) requires no direct communication with its neighbors, the multiscale code can be programmed as a perfectly parallel problem, which is well suited to large scale distributed platforms and does not suffer parallel slowdown. The resultant multiscale continuum-discrete coupling method retains the simplicity and effi ciency of a continuum-based fi nite element model while naturally introducing length-scale to cure mesh pathology. In addition, internal variables, such as plastic dilatancy and plastic fl ow direction, are now obtained directly from granular physics, without introducing unnecessary empirical relations and phenomenology. Microstructural information, such as force chain length, coordination numbers, and pore size distribution are compared with permeability inferred from lattice Boltzmann fl ow simulations to explain the mechanism that leads to the formation of fl ow conduit during strain localization.
منابع مشابه
A nonlocal multiscale discrete-continuum model for predicting mechanical behavior of granular materials
A three-dimensional nonlocal multiscale discrete-continuum model has been developed for modeling mechanical behavior of granular materials. In the proposed multiscale scheme, we establish an informationpassing coupling between the discrete element method, which explicitly replicates granular motion of individual particles, and a finite element continuum model, which captures nonlocal overall re...
متن کاملAn Enhanced Viscoplastic Constitutive Model for Semi-Solid Materials to Analyze Shear Localization
Semi-solid materials undergo strain localization and shear band formation as a result of granular nature of semi-solid deformation. In the present study, to analyze the shear localization, a unified viscoplastic constitutive model was developed for the homogeneous flow. Then, a linearized analysis of the stability performed by examining the necessary condition for the perturbation growth. For t...
متن کاملSheared granular layers: Competition between flash heating and particle comminution
Quantitatively predicting the dynamic response and energy partition of granular fault gouges under shear remains a major challenge in seismology. Earthquake laboratory experiments are limited by capacity of equipments and thus cannot provide similar conditions in real earthquake ruptures. This motivates the development of computational models of granular fault gouge that accurately predict thei...
متن کاملTwo Dimensional Mathematical Model of Tumor Angiogenesis: Coupling of Avascular Growth and Vascularization
Introduction As a tumor grows, the demand for oxygen and nutrients increases and it grows further if acquires the ability to induce angiogenesis. In this study, we aimed to present a two-dimensional continuous mathematical model for avascular tumor growth, coupled with a discrete model of angiogenesis. Materials and Methods In the avascular growth model, tumor is considered as a single mass, wh...
متن کاملNumerical stress analysis of granular material
The knowledge about granular materials is rather limited compared to the respective information on the solids, while a unified theory encompassing all granular material phenomena has not been created yet [1]. Despite the fact that granular material is the discontinuous media its behavior is commonly described by the continuum approach. Consequently, the definition of stresses in granular materi...
متن کامل